
General CBC Casper Protocols

Casper for RChain

Remaining Questions

RChain Consensus

Michael Birch

April 2018

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Outline

1 General CBC Casper Protocols
The building blocks
Safety

2 Casper for RChain
Consensus Values and Protocol States
Proof-of-Stake Details

3 Remaining Questions

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

What is Correct-By-Construction Casper?

A general framework for defining asynchronously safe,
byzantine fault tolerant consensus protocols

I.e. CBC Casper is not a single protocol, but a class of
protocols

All protocols in the Capser family share the same basic
structure and safety proof

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

What Does a CBC Casper Protocol Need?

A set of possible consensus values, C

A logic for making statements about the consensus values

Protocol states and executions which together define a
category

A function, E , mapping protocol states to true propositions
about the current consensus value

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

A Note About Non-Triviality

Must have |C | > 1

From the initial protocol state it must be able to select any
element of C

I.e. the protocol can’t be “always pick c 2 C” for some
particular c

This will be important once we see the safety proof

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

The Typical CBC Protocol

A protocol state is equal to a set of messages that have been
received having fewer than some amount of faults

Protocol executions are sending/receiving new messages

Each message includes a sender, an “estimate”, and a
justification

A justification is a set of messages that sender has seen

The protocol demands estimate = E(justification)

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

Equivocations

Since all messages have justifications, they can be causally
ordered (even in a full asynchronous setting!)

A single actor must have a serial order to their messages

Otherwise, they are “equivocating”

Equivocations are detectable via justifications as a pair of
messages from the same sender that cannot be causally
ordered with respect to one another

An equivocation is a byzantine fault

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

Estimate Safety

An estimate p is “safe” in a protocol state � if for all future
states �0, E(�0) ` p

Note � is a future state of itself by the identity protocol
execution

This is a local property – it only talks about the view of a
single actor

In the typical formulation this means that no other
(non-faulty) message I could receive in the future could
convince me that p does not hold for the consensus value

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

Consensus Safety

An estimate is “consensus safe” if it is consistent with
estimates of all future states of all protocol-following actors

This is a global property – it applies to the entire network

An estimate can be considered “finalized” when it is
consensus safe

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

The Consensus Safety Theorem

Theorem

Estimate Safety implies consensus safety over all protocol states
which share a common future.

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

The Consensus Safety Theorem

In symbols:

�
1

⇠ �
2

=) ¬(S(p,�
1

) ^ S(¬p,�
2

))

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

How do we know when we have estimate safety?

“Safety oracles” are algorithms which can determine if an
estimate is safe

Typically they are not able to determine if an estimate is not
safe though

I.e. SO(p) = T means p is definitely safe; SO(p) = F means
we don’t know if it’s safe or not yet

Such algorithms already exist, such as the “clique safety
oracle”

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

The building blocks

Safety

A Note About Non-Triviality (Revisited)

If protocol states were just sets of messages, all states would
have a common future

Then estimate safety would always imply consensus safety

So either there would be no safe estimates or the protocol
would be trivial (i.e. there would be no conflicting estimates)

This is why it is important that protocol states cannot accept
more than some number of byzantine faults, it makes some
states not have common futures

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Consensus Values and Protocol States

Proof-of-Stake Details

What are we coming to consensus on?

A (partially ordered) sequence of changes made to a Rholang
term (the genesis term)

These changes include adding new code in concurrent
composition (“deployments”)

As well as Comm. event reductions

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Consensus Values and Protocol States

Proof-of-Stake Details

What are the protocol states?

Following the typical construction – sets of messages with
fewer than some number of faults

Messages consist of blocks containing reference to parent
state(s), changes made, new post-state

Protocol executions are sending/receiving blocks

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Consensus Values and Protocol States

Proof-of-Stake Details

How are protocol states converted in to estimates?

GHOST fork choice rule, modified to allow for multiple parents

GHOST gives the head of the DAG, following it back to
genesis gives the sequence of changes made to the Rholang
term

GHOST uses “weights” for each of the di↵erent actors in the
protocol (called validators)

Weights come from the information contained in the Rholang
term via the “blessed” PoS contract

Weights change over time through bonding/unbonding; when
determining the “score” of a block, the weights in the parent
block are used

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Consensus Values and Protocol States

Proof-of-Stake Details

A brief outline of GHOST

GHOST has two stages: scoring and traversal

During scoring, the latest block from each validator (latest
defined by justifications; validator set defined by most recent
estimate) propagates its creator’s weight back through the
DAG along parent-child links

If a block is passed over multiple times then the weights of
the di↵erent validators are summed

As an addition step in scoring, a validator’s weight is added to
a block which includes that validator’s latest block as a “step
parent”

During traversal, we start an genesis and move forward
through the DAG to the child of the current block which has
the highest score until reaching a head of the DAG

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Consensus Values and Protocol States

Proof-of-Stake Details

Details of Proof-of-Stake

https:

//rchain.atlassian.net/wiki/spaces/CORE/pages/

346849284/Details+of+Proof-of-Stake+in+RChain

Michael Birch RChain Consensus

https://rchain.atlassian.net/wiki/spaces/CORE/pages/346849284/Details+of+Proof-of-Stake+in+RChain
https://rchain.atlassian.net/wiki/spaces/CORE/pages/346849284/Details+of+Proof-of-Stake+in+RChain
https://rchain.atlassian.net/wiki/spaces/CORE/pages/346849284/Details+of+Proof-of-Stake+in+RChain

General CBC Casper Protocols

Casper for RChain

Remaining Questions

What don’t we have worked out yet?

How many races should be allowed to be decided in a single
block? One? N (N > 1)? However many it takes to reach
quiescence?

Apart from that, basically everything involving slashing

Security of the system comes because of slashing

The goal is to have a system which is “incentive compatible”
meaning that the rational decision (in a game-theoretic sense)
is to follow the protocol

Slashing is the most powerful tool we have in shaping the
incentives validators have

Michael Birch RChain Consensus

General CBC Casper Protocols

Casper for RChain

Remaining Questions

Attacks and slashing

Primary attack vector seems to be censorship – validator
“pretends” to have not seen some message

A synchrony constraint could make this an attributable and
slashable o↵ense. What should the synchrony assumption be?

A few other questions related to slashing are given in the
“Open Questions” section of the “Details of Proof-of-Stake”
wiki page

Michael Birch RChain Consensus

	General CBC Casper Protocols
	The building blocks
	Safety

	Casper for RChain
	Consensus Values and Protocol States
	Proof-of-Stake Details

	Remaining Questions

