LADL: Logic As Distributive

 LawMike Stay
Greg Meredith

Curry-Howard Isomorphism

PROPOSITIONS ARE TYPES

Implicational Intuitionistic Logic

Axiom schemata:

$$
\begin{aligned}
& S:(Z=>Y=>X)=>(Z=>Y)=>(Z)=>X \\
& K: X=>Y=>X
\end{aligned}
$$

Rules:
Modus ponens:

$$
X=>Y \quad X
$$

SK combinators

ECMAScript 6:

$$
\begin{aligned}
& \text { // } S:(Z=>Y=>X)=>(Z=>Y)=>(Z)=>X \\
& S=a=>b=>c=>a(c)(b(c))
\end{aligned}
$$

// K: X => Y => X

$$
\mathrm{K}=\mathrm{a}=>\mathrm{b} \Rightarrow \mathrm{a}
$$

Type guards

(ES6)

```
let num = (n) => {
    if ('number' === typeof (n)) {
    return n;
    }
    throw new TypeError('Expected a number');
};
```


Arrow type guards

(ES6)
const arrow = (A, B) =>
(f) $=>$
(a) => B(f(A(a)));

Set builder notation

\{ n | 'number' === typeof n \}
\{ f| $\forall \mathrm{a}: \mathrm{A} . \mathrm{f}(\mathrm{a}): \mathrm{B}\}$

Comprehensions

(Python)
[n for n in list if type(n) is int]

Wadler: Comprehending monads

$$
[x]=\text { return } x
$$

$$
[f(x) \mid x \leftarrow X]=\mathrm{fmap} f \mathrm{X}
$$

$$
[\mathrm{y} \mid \mathrm{x} \leftarrow \mathrm{X}, \mathrm{y} \leftarrow \mathrm{Y}(\mathrm{x})]=\text { join } . \mathrm{Y}
$$

Collections as interfaces/monads/Lawvere theories

(Lawvere theory)

Th(FinSet)

- Sorts: S, A
- Function symbols:
- Atom: A -> S
- Empty: 1 ->S
- Union: S x S -> S
- Equations:
- Unit law: Union(Empty, s) = s = Union(s, Empty)
- Associative: Union(Union(a, b), c) = Union(a, Union(b, c))
- Commutative: Union(a, b) = Union(b, a)

Programming languages as Lawvere theories

(Lawvere theory)

Th(SK)

- Sorts: T
- Function symbols:
- s,t: T -> T
- S,K: T
- (- -): T^2 -> T
- \quad : $T^{\wedge} 3$-> T
- $k: T^{\wedge} 2->T$
- Equations
- $s \circ s=s \circ t=s$
- tot $=\mathrm{tos}=\mathrm{t}$
- $(s \circ \sigma)(x, y, z)=(((S x) y) z)$
- $(t \circ \sigma)(x, y, z)=((x z)(y z))$
- $(s \circ K)(x, y)=((K x) y)$
- $(\mathrm{t} \circ \mathrm{K})(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x}$

Structural types

(TypeScript)
\{ "name": "Joe Schmoe", "age": 43, "address": \{ "number": 123, "street": "Some Ave."\} \} is of the type \{ "name": string, "age": number, "address": \{ "number": number, "street": string\} \}

Sum of Lawvere theories

1. Identify sorts

2. Union function symbols
3. Union equations

Example

Th(Monoid)

- Sorts: M
- Function symbols:
- I: 1 -> M
- \quad : $\mathrm{M}^{\wedge} 2$-> M
- Equations
- Unit: $I \otimes x=x=x \otimes \mid$
- Assoc: $(a \otimes b) \otimes c=a \otimes(b \otimes c)$

Th(PA)

- Sorts: N
- Function symbols:
- z: 1 -> N
- s: N -> N
- No equations

Example

Th(Monoid+PA)

- Sorts: T
- Function symbols:
- I: 1 -> T // empty list
- \quad : $\mathrm{T}^{\wedge} 2$-> $\mathrm{T} / /$ concat
- z: 1 -> T// list containing zero
- s: T -> T// successor
- Equations
- Unit: $|\otimes x=x=x \otimes|$
- Assoc: $(a \otimes b) \otimes c=a \otimes(b \otimes c)$

Example

sss[z, ss[z, sz], s[]]

Collections of terms

1. Union sorts
2. Union function symbols
3. Union equations
4. Add function symbol from terms to collections

Example

Th(Monoid॰PA)

- Sorts: M, N
- Function symbols:
- I: 1 -> M // empty list
- \otimes : $\mathrm{M}^{\wedge} 2$-> $\mathrm{M} / /$ concat
- z: 1 -> N // zero
- s: N -> N // successor
- []: N -> M // return
- Equations
- Unit: $|\otimes x=x=x \otimes|$
- Assoc: $(a \otimes b) \otimes c=a \otimes(b \otimes c)$

Example

[sssz, sz, z] // = [3, 1, 0]

Interpretation

Structural Type => Collection of terms

Sum of theories, revisited

($\mathrm{T} \amalg \mathrm{C}$) $\mathrm{X}=$

$$
\begin{aligned}
& X+ \\
& (T X+C X)+ \\
& (T T X+T C X+C T X+C C X)+ \\
& (T T T X+\cdots)+
\end{aligned}
$$

Distributive law

$$
\text { ठ: TC } \Rightarrow \text { CT }
$$

Think of terms as products, collections as sums.
Product of Sums \Rightarrow Sum of Products

Interpretation

Structural Type => Collection of terms TTCCTX => TCTX => CTTX => CTX

Distributive Law doesn't always exist

Use lists for collections, SKI calculus for terms.

Lists are "linear" in the sense that they count uses.
Sets aren't: $\{w\}=\{w, w, w\}$. So δ exists for SKI when $C=$ Sets but not when $C=L i s t s$

Example: Primes

$$
\neg \mid \wedge \neg((\mathrm{p} \wedge \neg \mid) \otimes(q \wedge \neg \mid))
$$

Modalities

$\diamond A=\{s(a) \mid \exists a . t(a): A\}$
$A<K>B=\{t \mid \exists u: A, v: B, w . s(w)=K(t, u) \wedge t(w)=v\}$
Application gives arrow types: $\mathrm{A}<(--)>\mathrm{B}=\mathrm{A}=>\mathrm{B}$
Par gives Caires' rely-guarantee types: $A<-\mid->B=A \triangleright B$

Modalities for security

$$
\neg \diamond \exists x .\left(x!\left({ }^{*} d o n t L e a k\right) \mid(P \wedge \neg N i l)\right)
$$

