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CHAPTER 1

Introduction

Beginning back in the early ‘90s with MCC’s ESS and other nascent efforts a new possibility for the development
of distributed and decentralized applications was emerging. This was a virtual machine environment, running as a
node in a connected network of such VM-based environments. This idea offered a rich fabric for the development of
decentralized, but coordinated applications that was well suited to the Internet model of networked applications. The
model of application development that would sit well on top of such a rich environment was a subject of intensive
investigation.

Here we provide a brief, and somewhat idiosyncratic survey of several lines of investigation that converge to a sin-
gle model for programming and deploying decentralized applications. Notably, the model adapts quite well to the
blockchain setting, providing a natural notion of smart contract. As such, this summary can be taken as the design
rationale for the RChain architecture, and the rholang model of blockchain-based smart contracts.
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CHAPTER 2

Actors, Tuples and 𝜋

Rosette

At MCC the Carnot research group predicted the commercialization of the Internet a full decade before Netscape
rose to fame. The Carnot group, however was focused on decentralized and distributed applications, and developed a
network application node, called the Extensible Services Switch, or ESS, and the programming language Rosette for
programming these nodes. In Rosette/ESS the model under investigation was the actor model. Here we are speaking
quite specifically of an elaboration of the model developed by Carl Hewitt and refined by Gul Agha, who subsequently
consulted on the design of Rosette.

The Rosette elaboration was striking in scope and elegance. Specifically, Rosette decomposes an actor into

• a mailbox (a queue where messages from the actor’s clients arrive)

• a state (a tuple of values)

• a meta (a description of how to access values in the state in terms of more abstract keys)

• and a shared behavior object (a map from message types to code to run in response, roughly equivalent to a
vtable in languages like C++)

An actor’s processing consists of reading the next message in the mailbox, using the shared behavior object (or sbo)
to determine which code to run in response to the message and then execute that code in an environment in which
references to keys described in the meta are bound to locations in the state tuple. That code will principally send
messages to other actors and possibly await for responses.

An actor provides a consistent view of state under concurrent execution via an update; that is, an actor does not process
the next message in the mailbox until it has called update, and while the actor is processing the current message, the
mailbox is considered locked and is queuing client requests. When an actor calls an update a new logical thread of
activity is created to process the next message in the mailbox queue. That thread’s view of the state of the actor is
whatever is supplied to the update. The previous thread may still make changes to the state, but they are not observable
to all subsequent threads processing subsequent messages in the mailbox, and hence to all subsequent client requests.
This approach provides a scalable notion of concurrency that collapses to message arrival order non-determinism in
single threaded containers, and expands when there is system level support to map the logical threads in some outer
container (such as a VM, an operating system, or the hardware, itself).

5
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Already, this is a much more deliberately articulated model of actors than exists in most industrial systems today (cf
Scala’s AKKA framework). What makes the Rosette model so much more elegant, however, is its total commitment
to meta-level programming. In the Rosette model, everything is an actor. In particular, the mailbox of an actor is an
actor, and that has, in turn, a mailbox, state, meta, and sbo. It is noteworthy that Rosette makes this fully reflective
model with the possibility of infinite regress perform on par or better than languages like Java or C#.

In some sense, the structural reflection of actors in the Rosette model is echoed in languages like Java where classes are
in turn objects that can be programmatically probed and enlisted in computation. However, Rosette takes the reflective
principle a step further. The model offers not just structural reflection, but procedural reflection, by providing a notion
of continuation reconciled with the concurrency inherent in the model. Specifically, just as a shift-block in a shift-
reset style presentation of delimited continuations makes the awaiting continuation available to the code in the block,
Rosette’s reflective method makes the awaiting continuation available as a parameter to the method in the body of the
method. More on this later.

To close out this brief summary note that Rosette was not merely structurally and procedurally reflective, but also
lexically reflective. That is, all syntactic structure of programs in Rosette are also actors! The reflective infrastructure
for this provides the basis for a hygienic macro system, support for embedded domain specific languages, and a host
of other syntactic and symbolic processing features that many industrial languages still struggle to provide some 20
years after Rosette’s inception.

Tuplespaces

Around the same time as the Rosette model was being investigated for developing applications in this decentralized
and distributed setting, Gelernter proposed Tuplespaces. Here the idea is to create a logical repository above the
physical and communications layers of the Internet. The repository is essentially organized as a distributed key-value
database in which the key-value pairs are used as communication and coordination mechanisms between computations.
Gelernter describes three basic operations for interaction with the tuplespace, out to create a new data object in
tuplespace, in to consume (remove) an object from tuple space and rd to read an object without removing it

In contrast to message passing systems this approach allows senders and receivers to operate without any knowledge
of each other. When a process generates a new result that other processes will need, it simply dumps the new data into
tuplespace. Processes that need data can look for it in tuple space using pattern matching.

out("job", 999, "abc")

in("job", 1000, ?x) ; blocks because there is no matching tuple
in("job", 999, x:string) ; takes that tuple out of tuple space, assigning 'abc' to x

This raises questions about how publication of data is persisted and what happens to computations suspended waiting
on key-value pairs that are not present in the tuplespace. Moreover, the tuplespace mechanism makes no commitment
to any programming model. Agents using the tuplespace may be written in a wide variety of programming models
with a wide variety of implementations and interpretations of the agreed concurrency semantics. This makes reasoning
about the end-to-end semantics of an application made of many agents interacting through the tuplespace much, much
harder. However, the simplicity of the communication and coordination model has enjoyed wide appeal and there were
many implementations of the tuplespace idea over the ensuing decades.

A notable difference between the tuplespace notion of coordination and the actor model lies in the principal port
limitation of actors. An actor has one place, its mailbox, where it is listening to the rest of the world. Real systems and
real system development require that applications often listen to two or more data sources and coordinate across them.
Fork-join decision procedures, for example, where requests for information are spawned to multiple data sources and
then the subsequent computation represents a join of the resulting information streams from the autonomous data
sources, are quite standard in human decision making processes, from loan processing, to the review of academic
papers. Of course it is possible to arrange to have an actor that coordinates amongst multiple actors who are then
charged with handling the independent data sources. This introduces application overhead and breaks encapsulation
as the actors need to be aware they are coordinating.

6 Chapter 2. Actors, Tuples and 𝜋
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In contrast, the tuplespace model is well suited to computations that coordinate across multiple autonomous data
sources.

Distributed implementations of mobile process calculi

Tomlinson, Lavender, and Meredith, among others, provided a realization of the tuplespace model inside Rosette/ESS
as a means to investigate the two models side-by-side and compare applications written in both styles. It was during
this work that Meredith began an intensive investigation of the mobile process calculi as yet a third alternative to
the actor model and the tuplespace model. One of the primary desiderata was to bridge between having a uniform
programming model, such as the actor model of Rosette, making reasoning about application semantics much easier,
with the simple, yet flexible notion of communication and coordination afforded in the tuplespace model.

In the code depicted below the method names consume and produce are used instead of the traditional Linda verbs
in and out. The reason is that once reflective method strategy was discovered, and then refined using delimited
continuations, this lead to new vital observations relating to the life cycle of the data and continuation.

Listing 2.1: A Rosette implementation of the tuplespace get semantics

(defRMethod NameSpace (consume ctxt & location)
;;; by makng this a reflective method - RMethod - we gain access to the awaiting
→˓continuation
;;; bound to the formal parameter ctxt
(letrec [[[channel ptrn] location]

;;; the channel and the pattern of incoming messages to look for are
→˓destructured and bound

[subspace (tbl-get chart channel)]
;;; the incoming messages associated with the channel are collected

→˓in a subtable
;;; in this sense we can see that the semantic framework supports a

→˓compositional
;;; topic/subtopic/subsubtopic/... structuring technique that unifies

→˓message passing
;;; with content delivery primitives
;;; the channel name becomes the topic, and the pattern structure

→˓becomes
;;; the subtopic tree
;;; this also unifies with the URL view of resource access

[candidates (names subspace)]
[[extractions remainder]

(fold candidates
(proc [e acc k]

(let [[[hits misses] acc]
[binding (match? ptrn e)]]

(if (miss? binding)
(k [hits [e & misses]])
(k [[[e binding] & hits] misses])))))]
;;; note that this is generic in the match? and miss? predicates
;;; matching could be unification (as it is in SpecialK) or it

→˓could be
;;; a number of other special purpose protocols
;;; the price for this genericity is performance
;;; there is decent research showing that there are hashing

→˓disciplines
;;; that could provide a better than reasonable approximation of

→˓unification
[[productions consummation]

2.3. Distributed implementations of mobile process calculi 7
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(fold extractions
(proc [[e binding] acc k]
(let [[[productions consumers] acc]

[hit (tbl-get subspace e)]]
(if (production? hit)

(k [[[[e binding] hit] & productions] consumers])
(k [productions [[e hit] & consumers]])))))]]

;;; this divides the hits into those matches that are data and
;;; those matches that are continuations
;;; and the rest of the code sends data to the awaiting continuation
;;; and appends the continuation to those matches that are currently
;;; data starved
;;; this is a much more fine-grained view of excluded middle

(seq
(map productions

(proc [[[ptrn binding] product]]
(delete subspace ptrn)))

(map consummation
(proc [[ptrn consumers]]
(tbl-add subspace
ptrn (reverse [ctxt & (reverse consumers)]))))

(update!)
(ctxt-rtn ctxt productions))))

Listing 2.2: A Rosette implementation of the tuplespace put semantics

;;; This code is perfectly dual to the consumer code and so all the comments
;;; there apply in the corresponging code sites
(defRMethod NameSpace (produce ctxt & production)
(letrec [[[channel ptrn product] production]

[subspace (tbl-get chart channel)]
[candidates (names subspace)]
[[extractions remainder]

(fold candidates
(proc [e acc k]

(let [[[hits misses] acc]
[binding (match? ptrn e)]]

(if (miss? binding)
(k [[e & hits] misses])
(k [hits [e & misses]])))))]

[[productions consummation]
(fold extractions
(proc [[e binding] acc k]
(let [[[productions consumers] acc]

[hit (tbl-get subspace e)]]
(if (production? hit)

(k [[[e hit] & productions] consumers])
(k [productions [[[e binding] hit] & consumers]])))))]]

(seq
(map productions

(proc [[ptrn prod]] (tbl-add subspace ptrn product)))
(map consummation

(proc [[[ptrn binding] consumers]]
(seq

(delete subspace ptrn)
(map consumers
(proc [consumer]

8 Chapter 2. Actors, Tuples and 𝜋
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(send ctxt-rtn consumer [product binding])
binding)))))

(update!)
(ctxt-rtn ctxt product))))

Essentially, the question is what happens to either or both of data and continuation after an input request meets an
output request. In traditional tuplespace and 𝜋-calculus semantics both data and continuation are removed from the
store. However, it is perfectly possible to leave either or both of them in the store after the event. Each independent
choice leads to a different major programming paradigm.

Traditional DB operations

Removing the continuation but leaving the data constitutes a standard database read:

ephemeral - data
ephemeral - k

persistent - data
ephemeral - k

ephemeral - data
persistent - k

persistent - data
ephemeral - k

producer put store publish publish with history
consumer get read subscribe subscribe

Traditional messaging operations

Removing the data, but leaving the continuation constitutes a subscription in a pub/sub model:

ephemeral - data
ephemeral - k

persistent - data
ephemeral - k

ephemeral - data
persistent - k

persistent - data
ephemeral - k

producer put store publish publish with his-
tory

consumer get read subscribe subscribe

Item-level locking in a distributed setting

Removing both data and continuation is the standard mobile process calculi and tuplespace semantics:

ephemeral - data
ephemeral - k

persistent - data
ephemeral - k

ephemeral - data
persistent - k

persistent - data
ephemeral - k

producer put store publish publish with history
consumer get read subscribe subscribe

Building on Tomlinson’s insights about the use of Rosette’s reflective methods to model the tuplespace semantics (see
code above), Meredith provided a direct encoding of the 𝜋-calculus into tuplespace semantics via linear continuations.
This semantics was at the heart of Microsoft’s BizTalk Process Orchestration Engine, and Microsoft’s XLang, arguably
the first Internet scale smart contracting language, was the resulting programming model. This model was a direct
influence on W3C standards, such as BEPL and WS-Choreography, and spawned a whole generation of business
process automation applications and frameworks.

As with the refinements Rosette brings to the actor model, the 𝜋-calculus brings a specific ontology for applications
built on the notion of processes that communicate via message passing over channels. It is important to note that the
notion of process is parametric in a notion of channel, and Meredith used this level of abstraction to provide a wide
variety of channel types in XLang, including bindings to Microsoft’s MSMQ message queues, COM objects, and
many other access points in popular technologies of the time. Perhaps most central to today’s Internet abstractions is
that URIs provide a natural notion of channel that allows for a realization of the programming model over URI aware

2.3. Distributed implementations of mobile process calculi 9
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communications protocols, such as http. Likewise, in terms of today’s storage climate, keys in a key-value store, such
as a nosql database also map directly to the notion of channel in the 𝜋-calculus, and Meredith used this very idea to
provide the encoding of the 𝜋-calculus into tuplespace semantics.

From Tuplespaces to 𝜋-calculus

The 𝜋-calculus captures a core model of concurrent computation built from message-passing based interaction. It
plays the same role in concurrent and distributed computation as the lambda calculus plays for functional languages
and functional programming, setting out the basic ontology of computation and rendering it to a syntax and semantics
in which calculations can be carried out. Given some notion of channel, it builds a handful of basic forms of process,
the first three of which are about I/O, describing the actions of message passing.

• 0 is the form of the inert or stopped process that is the ground of the model

• x?( ptrn )P is the form of an input-guarded process waiting for a message on channel x that matches
a pattern, ptrn, and on receiving such a message will continue by executing P in an environment where any
variables in the pattern are bound to the values in the message

• x!( m ) is the form of sending a message, m, on a channel x

The second three are about the concurrent nature of processes, the creation of channels, and recursion.

• P|Q is the form of a process that is the parallel composition of two processes P and Q where both processes are
executing concurrently

• (new x)P is the form of a process that executes a subprocess, P, in a context in which x is bound to a fresh
channel, distinct from all other channels in use

• (def X( ptrn ) = P)[ m ] and X( m ), these are the process forms for recursive definition and invo-
cation

These basic forms can be interpreted in terms of the operations on Tuplespaces:

P,Q ::= [[-]](-) : 𝜋 -> Scala =
0 { }
| x?(prtn)P { val ptrn = T.get([[x]](T)); [[T]](P) }
| x!(m) T.put([[x]], m)
| P|Q spawn{ [[P]](T) }; spawn{ [[P]](T) }
| (new x)P { val x = T.fresh("x"); [[P]](T) }
| (def X(ptrn) = P)(m) object X { def apply(ptrn) = { [[P]](T) } }; X(m)
| X(ptrn) X(ptrn)

Monadically structured channel abstraction

Meredith then pursued two distinct lines of improvement to these features. Both of them are related to channel
abstraction. The first of these relates the channel abstraction to the stream abstraction that has become so popular in
the reactive programming paradigm. Specifically, it is easy to prove that a channel in the asynchronous 𝜋-calculus
corresponds to an unbounded and persistent queue. This queue can be viewed as a stream, and access to the stream
treated monadically, as is done in the reactive programming paradigm. This has the added advantage of providing
a natural syntax and semantics for the fork-join pattern so prevalent in concurrent applications supporting human
decision making applications mentioned previously.

( let [[data (consume ns channel pattern)]] P)

for( data <- ns.consume(channel, pattern) ){ P }

10 Chapter 2. Actors, Tuples and 𝜋
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This point is worth discussing in more detail. While the 𝜋-calculus does resolve the principle port limitation of the
actor model, it does not provide natural syntactic or semantics support for the fork-join pattern. Some variants of the
𝜋-calculus, such as the join calculus, have been proposed to resolve this tension, but arguably those proposals suffer an
entanglement of features that make them unsuited to many distributed and decentralized programming design patterns.
Meanwhile, the monadic interpretation of the channel provides a much more focused and elementary refactoring of
the 𝜋-calculus semantics, consistent with all existing denotational semantics of the model, that provides a natural
notion of fork-join while also mapping cleanly onto the reactive programming paradigm, and thus making integration
of development stacks, such as Apache Spark, relatively simple.

If we look at this from the perspective of programming language evolution, we first see a refactoring of the semantics
to look like:

P,Q ::= [[-]](-) : 𝜋 -> Scala =
0 { }
| x?(prtn)P for( ptrn <- [[x]](T) ){ [[P]](T) }
| x!(m) T.put([[x]], m)
| P|Q spawn{ [[P]](T) }; spawn{ [[P]](T) }
| (new x)P { val x = T.fresh("x"); [[P]](T) }
| (def X(ptrn) = P)(m) object X { def apply(ptrn) = { [[P]](T) } }; X(m)
| X(ptrn) X(ptrn)

where the for-comprehension is syntactic sugar for a use of the continuation monad. The success of this interpretation
suggests a refactoring of the source of the interpretation.

P,Q :: = 0
| for (ptrn <- x)P
| x!(m)
| P|Q
| (new x)P
| (def X(ptrn) = P)[m]
| X(ptrn)

This refactoring shows up in Meredith and Stay’s work on higher categorical semantics for the 𝜋-calculus [SM15],
and is then later incorporated in the rholang design. The important point to note is that the for-comprehension-based
input can now be smoothly extended to input from multiple sources, each/all of which must pass a filter, before the
continuation is invoked.

𝑓𝑜𝑟(𝑝𝑡𝑟𝑛1 ← 𝑥1; . . . ; 𝑝𝑡𝑟𝑛𝑛 ← 𝑥𝑛𝑖𝑓𝑐𝑜𝑛𝑑)𝑃

Using a for-comprehension allows the input guard semantics to be parametric in the monad used for channels, and
hence the particular join semantics can be supplied polymorphically. The significance of this cannot be overempha-
sized. Specifically:

• It contrasts with the join-calculus where the join is inseparably bound together with recursion. The monadic
input guard allows for anonymous, one time joins, which are quite standard in fork-join patterns in human
decision processes.

• It provides the proper setting in which to interpret Kiselyov’s LogicT monad transformer. Searching down each
input source until a tuple of inputs that satisfies the conditions is found is sensitive to divergence in each input
source. Fair interleaving, and more importantly, a means to programmatically describe interleaving policy is
critical for reliable, available, and performant services. This is the actual import of LogicT and the right setting
in which to deploy that machinery.

• We now have a syntactic form for nested transactions. Specifically, P can only run in a context in which all of the
state changes associated with the input sources and the condition are met. Further, P can be yet another input-
guarded process. Thus a programmer, or a program analyzer, can detect transaction boundaries syntactically.
This is vital for contracts involving financial and other mission-critical transactions.

2.3. Distributed implementations of mobile process calculi 11
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A pre-RChain model for smart contracts

This is a precursor to the RChain model for smart contracts, as codified in the rholang design. It provides the richest
set of communication primitives for building contracts proposed to date that has been driven both by theory and by
industrial scale implementation and deployment. Yet, the entire set of contract primitives fits on a single line. There is
not a single design proposal in this space, from the PoW-based blockchain to the EVM, that meets the quality assurance
pressures this proposal has withstood. Specifically, the proposal folds in all the experiences using Rosette, Tuplespaces,
and BizTalk and boils them down to a single design that meets the desiderata discovered in all of these efforts. It does
so with only seven primitives, and primitives that line up with the dominant programming paradigms of the current
market. Yet, as the examples from the rholang spec, and the paper on preventing the DAO bug with behavioral types
show, the entire range of contracts expressible in existing blockchain technology is compactly expressed in this model.

As seen in the rholang design, however, this is only the beginning of the story. A little background is necessary to
understand the import or this development. For the last 20 years a quiet revolution has been going on in computer
science and logic. For many years it was known that for small, but growing fragment of the functional programming
model types corresponded to propositions, and proofs corresponded to programs. If the correspondence, known vari-
ously as the proposition-as-types paradigm or the Curry-Howard isomorphism, could be made to cover a significant,
practical portion of the model, it has profound implications for software development. At a minimum it means that the
standard practice of type-checking programs coincides with proofs that programs enjoy certain properties as a part of
their execution. The properties associated with the initial fragment covered by the Curry-Howard isomorphism largely
had to do with respecting the shape of data flowing into and out of functions, effectively eliminating certain class of
memory access violations by compile time checks.

With the advent of J-Y Girard’s linear logic, we have seen a dramatic expansion of the proposition-as-types paradigm.
With linear logic we see the expansion of the coverage far beyond the functional model, which is strictly sequential.
Instead, the coverage offered by type checking for proving properties extends to protocol conformance checks in
concurrent execution. Then Caires and Cardelli discovered the spatial logics which further expanded the coverage
to include structural properties of the programs internal shape. Building on these discoveries, Stay and Meredith
identified an algorithm, the LADL algorithm, for generating type systems such that well typed programs would enjoy
a wide variety of structural and behavioral properties ranging from safety and liveness to security properties. By the
application of the LADL algorithm developed by Stay and Meredith, this untyped model of the contract primitives
identified here can be given a sound and complete type system rich enough to provide compile time safeguards that
ensure key safety and liveness properties expected of mission-critical applications for handling financial assets and
other sensitive content. A single example of such a compile time safeguard is sufficient to have caught and prevented
the bug that led to the loss of 50M USD from the DAO, at compile time.

SpecialK

The monadic treatment of channel semantics is the insight explored in the SpecialK stack. Firstly, it maps channel ac-
cess to for-comprehension style monadically structured reactive programming. Secondly, it maps channels simultane-
ously to local storage associated with the entire node, as well as to queues in an AMQP provider based communication
infrastructure between nodes. This provides the basis of a content delivery network that can be realized over a network
of communicating nodes, that is integrated with a 𝜋-calculus based programming model. In particular, as can be seen
in the comments in the code above, the monadic treatment of channel + pattern unifies message-passing and content
delivery programming paradigms. Specifically, the channel can be seen as providing topic, while the pattern provides
nested subtopic structure to the message stream. This integrates all of the standard content addressing mechanisms,
such as URLs + http, as well as providing a query model. See the section below for details.

From SpecialK to RChain

As we will see, the RChain model for contracts inherits all of SpecialK’s treatment of content delivery. Yet, where
SpecialK realized the pre-RChain contract model as an embedded domain specific language hosted as a set of libraries
in Scala, the RChain model realizes the model as a full blown programming language to be run on a VM replicated

12 Chapter 2. Actors, Tuples and 𝜋
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on the blockchain, very much in the spirit of Ethereum’s architecture and design. This choice addresses several
shortcomings in the Synereo V1 architecture as outlined in the first Synereo white paper. In particular, it avoids the
problem of having to pay other blockchains fees to run the financial capabilities of the attention economy, and thus
suffering a number of economics-based attacks on the attention economy system contracts. It also addresses technical
debt in the SpecialK stack related to the Scala delimited continuations library central to the SpecialK semantics, while
dramatically increasing the capability of the smart contracts supported.

Rho-calculus

While the monadic abstraction provides structure on the stream of content flowing over channels a more fundamental
observation provides the necessary structure to support industrial scale meta-level programming. It is important to
recognize that virtually all of the major programming languages support meta-level programming. The reason is
simply fact that programmers don’t write programs. Programs write programs. Programmers write the programs that
write programs. This is how the enormous task of programming at Internet scale is actually accomplished, using
computers to automate as much of the task as possible. From text editors to compilers to code generators to AI, this is
all a part of the basic ecosystem that surrounds the production of code for services that operate at Internet scale.

Taking a more narrow perspective, it is useful to witness the painful experiences of Scala to add support for meta-level
programming after the fact of the language design. Reflection in Scala was not even thread safe for years. Arguably,
this experience, plus the problems with the type system were the reasons for the back-to-the-drawing board effort
underlying the dotty compiler and new language design. These and other well explored efforts make it clear that
providing primitives for meta-level programming from the outset of the core design of the programming model is
essential for longevity and practical use. In short, a design that practically supports meta-level programming is simply
more cost effective in a project that wants to get to production-ready feature set on par with say Java, C#, or Scala.

Taking a cue from Rosette’s total commitment to meta-level programming, the r-eflective h-igher o-rder 𝜋-calculus,
or rho-calculus, for short, introduces reflection as part of the core model. It provides two basic primitives, reflect
and reify, that allow an ongoing computation to turn a process into a channel, and a channel that is a reified process
back into the process it reifies. The model has been peer reviewed multiple times over the last ten years. Prototypes
providing a clear demonstration of its soundness have been available for nearly a decade. This takes the set of contract
building primitives to a grand total of nine primitives, far fewer than found in Solidity, Ethereum’s smart contracting
language, yet the model is far more expressive than Solidity. In particular, Solidity-based smart contracts do not enjoy
internal concurrency.

Implications for resource addressing, content delivery, query, and
sharding

Before diving into how the model relates to resource addressing, content delivery, query and sharding, let’s make a few
quick observations about path-based addressing. Note that paths don’t always compose. For example, take /a/b/c and
/a/b/d. These don’t compose naturally to yield a path. However, every path is automatically a tree, and as trees these
do compose to yield a new tree /a/b/c+d. In other words, trees afford a composable model for resource addressing.
This also works as a query model. To see this latter half of this claim let’s rewrite our trees in this form:

/𝑎/𝑏/𝑐 ↦→ 𝑎(𝑏(𝑐))

/𝑎/𝑏/𝑐+ 𝑑 ↦→ 𝑎(𝑏(𝑐, 𝑑))

Then notice that unification works as a natural algorithm for matching and decomposing trees, and unification-based
matching and decomposition provides the basis of query.

In light of this discussion, let’s look at the I/O actions of the 𝜋-calculus:

2.4. Implications for resource addressing, content delivery, query, and sharding 13
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input: x?(a(b(X,Y)))P for(a(b(X,Y)) <- x)P
output: x!(a(b(c,d)))

When these are placed in concurrent execution we have:

for(a(b(X,Y)) <- x)P | x!(a(b(c,d)))

which evaluates to P{ X := c, Y := d }, that is we begin to execute P in an environment in which X is bound
to c, and Y is bound to d. We write the evaluation step symbolically:

for(a(b(X,Y)) <- x)P | x!(a(b(c,d))) → P{ X := c, Y := d }

This gives rise to a very natural interpretation:

• Output places resources at locations:

x!(a(b(c,d)))

• Input queries for resources at locations:

for(a(b(X,Y)) <- x)P

This is only the beginning of the story. With reflection we admit structure on channel names, like x in the example
above, themselves. This allows to subdivide the space where resources are stored via namespaces. Namespaces
become the basis for a wide range of features from security to sharding.

The RChain model of smart contracts

Now we have a complete characterization of the RChain model of smart contracts. It is codified in the rholang design.
The number of features it enjoys as a result of reflection alone, from macros to protocol adapters, is enough to warrant
consideration.Taking a step back, however, we see further that

• it enjoys a sound and correct type system

• a formal specification

• a rendering of the formal specification to working code

• it dictates a formal specification of a correct-by-construction VM

• this dictates a clear compilation strategy as a series of correct-by-construction transforms to the byte code for a
VM that has been field test for 20 years

Now compare this starting point to Ethereum’s current point with Solidity and the EVM. If the goal is to produce
a believable timeline over which we reach a network of blockchain nodes running formally verified, correct-by-
construction code, then even with Ethereum’s network effect this approach has distinct advantages. Clearly, there
is enough market interest to support the development of both options.

14 Chapter 2. Actors, Tuples and 𝜋



CHAPTER 3

Enter the blockchain

One simple way to interpret blockchain technology is that it provides a decentralized replication technology. State
can be replicated across a network of nodes without a centralized authority managing the replication. The subtle
interplay between this replication mechanism and economics-based security sometimes obscures the basic value of the
replication, itself. Replication of this nature is already a high impact value proposition. Witness Ethereum’s proposal.
The essence of it is to replicate the state of a virtual machine, instead of the state of ledger, on the blockchain. This
provides not just a smart contracting system, but a global public compute resource that cannot be taken down.

More than Wall St or the City should be sitting up and taking notice. Amazon’s AWS, Google’s Cloud Service,
Microsoft’s Azure, all of these businesses become profoundly affected by the Ethereum proposal. The fact that the
ledger, or economic aspect of replicated state can now be used as an economic security measure against DoS attacks
on the global compute resource serves to strengthen the proposal. It also changes the nature of the ecosystem that uses
these services.

The entire value proposition of cloud service infrastructure providers vitally depends on microtransactions linked to the
use of compute resources. The Ethereum proposal integrates this at lowest level of execution and storage, in a manner
that is crucial to the security of the system. It’s simply a better, more elegant design than incumbent cloud solutions.
More importantly, it’s realized as a public resource. One of the recent revolutions that shares some characteristics of
this emerging situation is the shift in telecommunications as a result of the Internet. The telephony providers knew
that the Internet was going to change the way telecommunications was done and had to scramble to adapt and adjust
to a landscape where more than half of long distance telecommunications would be conducted using free services like
Skype, zoom, and Google Hangouts. Cloud infrastructure service providers, and the whole interconnected network
of services running on them will likewise have to shift to a landscape where there is a sophisticated cryptocurrency
market integrated with globally available, public compute resources at the lowest level.

Casper

At the 20K foot level this is a profound idea, but at the level of execution for production systems, it highlights several
desiderata. First of all, it requires a different replication technology! The very technology that gave birth to the
Ethereum proposal is the first thing that has to be re-imagined to make Ethereum’s idea viable at Internet scale for
production systems. Proof of work is simply too costly in terms of energy. The arguments for this are numerous, and
all of the major stakeholders in Ethereum’s development community have embraced them. Instead, a new pay-to-play
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algorithm, called Casper, is under development by a loose federation of stakeholders, including Buterin, Zamfir, and
Meredith.

Bet by block versus bet by proposition

At the core of the Casper consensus algorithm is a cycle of message exchange amongst validators participating in
the replication protocol. This cycle of message exchange ultimately converges to produce the consensus state. The
protocol is factored in such a way that the consensus cycle, sometimes called the betting cycle, works independently
of the type of state on which the validators are developing a consensus. It could be used to develop consensus on a
single boolean value (e.g. the result of a coin flip), or something much more sophisticated, like the state of a virtual
machine. This is further articulated into how the state is packaged. Specifically, the very name, blockchain, refers to
the fact that state is packaged in blocks that are chained together. Thus, a very natural object of the consensus cycle is
a block. Roughly speaking, validators exchange messages to converge on the next block in the chain.

This represents a natural, step-by-step evolution from PoW algorithms. Notice, however, that this rate limits block
production to the rate of consensus cycle. Because blocks constitute a packaging of transactions (txn’s for short),
this provides a rough estimate of the transaction processing capability of the algorithm. Vitalik’s PoC suggests that
this is much, much faster than PoW-based BTC blockchain performance. However, the aim is to get into the range
of 40K txns/sec, roughly on par with the transaction rates of financial networks like Visa. To achieve this we make
two fundamental observations. The first of these is common sense: most transactions are isolated. The transaction
associated with the person buying car parts in Shanghai is separate and isolated from the transaction associated with
the person buying coffee in Seattle. Isolation of multiple concurrent transactions follows the same principle as the
multi-lane freeway. As long as there’s little to no lane-changing, there’s a much greater throughput on a multi-lane
freeway than on a single lane highway. No lane-changing is what we mean by isolation. Following this analogy, we
want a block to represent a section of highway with multiple lanes for which there is virtually no lane-changing.

The other observation is more subtle. It has to do with programmatic compression. One analogy that might help comes
from computer graphics. For many images, such as that of a fern, there are two fundamentally different ways to draw
the image. In one of them, a large set of data points corresponding to pixels is provided to the renderer. Presumably,
this data set is provided by sampling, such as might be provided by scanning an actual fern. The other way is to
recognize that there is an algorithmic pattern associated with ferns that is essentially captured by a fractal. Then the
data set of pixels can be represented in a tiny program that generates the fractal image corresponding to the fern. In
this sense the program represents a form of compression. Rather than ship the large data set of pixels to the renderer,
a relatively small program is shipped instead, and the renderer runs the program to get a stream of pixels it can pull as
fast as it can draw.

Collections of transactions can be given similar compression using propositions. The LADL algorithm of Stay and
Meredith describes precisely how a proposition corresponds to a collection of transactions. What remains is how
to relate different propositions proposed by different validators. Specifically, suppose validator Abed is looking at
transactions arising from one portion of the network while validator Troy is looking at transactions arising from
another portion of the network. Assuming Abed and Troy are communicating about those groups of transactions
using propositions, how do we make sure that the groups of transactions are consistent? This is where propositions as
interpreted by the LADL algorithm have significant compression power.

By reasoning via the logical level it is possible to determine whether a collection of propositions is consistent. In the
case of propositions interpreted by the LADL algorithm they will be consistent if and only if the meaning of their
combination (say conjunction) (i.e. the collection they denote) is not empty. When the combination is empty then
one or more of the propositions is inconsistent. At this point the validators invoke the Casper betting cycle to pick a
winner amongst the maximally consistent subsets of propositions. Once the betting cycle converges, the block that
is determined is given in terms of a collection of consistent propositions which then expands out to a much, much
larger set of transactions, much the same way that the fern is rendered from the fractal decompression algorithm that
produces the pixel set for the image.

16 Chapter 3. Enter the blockchain
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From data storage to block storage in the RChain model

Building on the observations in the section on content storage and query we can detail a direct representation of JSON
into a fragment of the rholang syntax referred to in the diagram below as RHOCore.

Fig. 3.1: RSON : RChain data representation

This illustrates a meta-level point about the data storage interpretation. The storage and access semantics is consistent
with a self-hosted serialization format, for rendering state to disk or wire. in practical terms, whatever a programmer
has rendered to JSON for serialization on the wire or storage in a database like mongodb, can be rendered to an
isomorphic expression in a fragment of the rholang syntax; and that expression, if it were executed, would effect the
storage. Moreover, the complexity of the format exactly mirrors JSON. However, the spatial types of rholang serve to
provide a type directed data validation mechanism for serializing and deserializing the data.

However, this only uses the output or producer side of the representation. By including the input or consumer side of
the representation we can also provide a faithful and efficient representation of block structure. First note the meaning
of the input guarded form. The continuation is guaranteed to execute in a context in which the values have been
observed at the channels.

This is precisely a transactional guarantee. From this we can create a faithful interpretation of block structure that
corresponds precisely to program syntax.

Sharding

Another desideratum in making the Ethereum proposal practical is to ditch the global computer! Instead of a single
VM running on the blockchain, what is required is a composition of VMs each serving a shard of client processing.
In some sense this marks a return to the original vision of the Internet as conceived when the Rosette/ESS design was
proposed. There are some key differences, however. First, the state of each VM is stored on the blockchain. Second,
though each VM is cut of the same cloth there is a discipline governing how they interact. Specifically, though they
are all effectively copies of the same VM, each is operating on specific virtual address spaces, or namespaces as we
have been calling them. When they are operating on the same namespace we have the guarantee that the state across
each copy is exactly the same. This is what the consensus algorithm is for.

3.2. Sharding 17
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Fig. 3.2: RSON : RChain data representation

Fig. 3.3: RSON : RChain data representation
Block representation also embeds directly into RHOCore

18 Chapter 3. Enter the blockchain
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The use of a compositional account of namespaces to coordinate amongst the VMs is one of the key ingredients
missing in Ethereum’s VM design, and the principal reason it is not compositional. The other core change is that the
RChain machine design, like the Rosette/ESS design is fundamentally concurrent. Smart contracts in RChain, like
actors in Rosette/ESS enjoy fine-grained concurrency during their execution. Two key factors contribute to making
this safe for financial transactions.

Concurrency, non-determinism, and safety

The two mechanisms that allow fine-grained concurrent execution to be safe in the distributed setting operate at
fundamentally different levels. One is a runtime mechanism and the other is a compile time mechanism. The runtime
is easier to understand. The non-determinism arising from concurrent execution associated with a contract always
arises as a race of the form:

• two outputs racing to serve one input request

x!( v1 ) | for( y <- x )P | x!( v2 )

• two input requests vying for a single output

for( y <- x )P1 | x!( v ) | for( y <- x )P2

Whether that race arises from computation inside the contract or between the contract and its environment. In either
of the two possible race cases, for the contract to make progress one of the reductions will be chosen and that choice
is the transaction. That’s the meaning of the transactional boundary described above. Hence, these are the transactions
that are replicated by the Casper consensus algorithm. Thus, while there is internal non-determinism, the replicated
state is deterministic. All nodes in the same shard see the same state.

This still makes it possible to write unsafe code. Despite the determinism of the EVM, the DAO bug shows up as
a kind of unfairness in scheduling state updates relative to servicing new client requests; and, when expressed as a
rholang contract, arises as an unwanted race condition. That is, there is a level of non-determinism that was allowed
by the contract that wasn’t safe with respect to the intended semantics of the contract. In most practical situations
these can be detected and prevented at compile time using the spatial behavioral types of rholang. It is certainly the
case in the specific instance of the bug exploited in the attack against the DAO.

What is a VM?

Let’s take a moment to review what’s in a VM. Every VM corresponds to a table. The table lists a set of transitions.
The transitions are of the form:

<byte code, machine state> -> <byte code’, machine state’>

The transitions specify what happens when a machine in a given state encounters a particular byte code instruction:

rosette> (code-dump (compile '(+ 1 2)))
litvec:

0: {RequestExpr}
codevec:

0: alloc 2
1: lit 1, arg[0]
2: lit 2, arg[1]
3: xfer global[+],trgt
5: xmit/nxt 2

rosette>

3.2. Sharding 19
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Examples include loading a literal into a register or popping register values and adding them. Registers, heap, stack,
these are examples of components of the machine state. In the case of the RhoVM the most important transition is the
one associated with I/O:

for( y <- x )P | x!( Q ) -> P{ @Q / y }

This transition says that when an input guarded thread in the VM is waiting for input on x is running concurrently with
a thread committing and output on x, then the data passes along x, is bound to the variable y in the continuation P. It
is important to understand that this is really a higher level transition that may involve many lower level state changes.
This is because x may be bound to a wide variety of channels, from tables in local storage, to AMQP queues, to tcp/ip
sockets. Each of these has a natural semantics that interoperates smoothly with this higher level transition rule. The
interoperation between this high level transition rule and different channel semantics is precisely what the Tuplespace
semantics provides.

What’s important for this discussion, however, is the recognition that a given VM instance, i.e. a copy of the VM
table plus a specific configuration of machine state, can be restricted to operate on a specific collection of names.
This collection of names, what we have been calling a namespace, can be programmatically specified and hence not
necessarily finite.

In this architecture a shard corresponds roughly to a namespace and a machine instance and the RChain nodes on in
the network on which the state of this VM is stored. We say ‘roughly’ because shards may be composed of shards,
meaning that there are subgroups of the nodes in a given shard that replicate machine state restricted to a subspace of
the namespace. Likewise, because VMs can only interoperate if they have overlapping namespaces, multiple shards
can be overlaid on the same nodes. This provides both availability and security features because using these facts
about the relationships of VM, nodes, and namespaces, finding a correlation between physical locations of nodes and
namespaces can be made as computationally hard as desired.
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CHAPTER 4

Conclusions and future work

We have provided a brief review of the technology leading up to an effective rendering of the mobile process calculi
as a programming model and execution engine for decentralized networks of programmable VMs. We have described
a step by step procedure for realizing this on a blockchain in which the state of the VMs are stored.We have provided
the background and design rationale for this approach as a correct-by-construction architecture of a blockchain based
public, economic, compute infrastructure.
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